3.1.98 \(\int (a+a \cos (c+d x))^{5/2} (A+C \cos ^2(c+d x)) \sec ^4(c+d x) \, dx\) [98]

3.1.98.1 Optimal result
3.1.98.2 Mathematica [A] (verified)
3.1.98.3 Rubi [A] (verified)
3.1.98.4 Maple [B] (verified)
3.1.98.5 Fricas [A] (verification not implemented)
3.1.98.6 Sympy [F(-1)]
3.1.98.7 Maxima [B] (verification not implemented)
3.1.98.8 Giac [A] (verification not implemented)
3.1.98.9 Mupad [F(-1)]

3.1.98.1 Optimal result

Integrand size = 35, antiderivative size = 192 \[ \int (a+a \cos (c+d x))^{5/2} \left (A+C \cos ^2(c+d x)\right ) \sec ^4(c+d x) \, dx=\frac {5 a^{5/2} (5 A+8 C) \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{8 d}-\frac {a^3 (49 A-24 C) \sin (c+d x)}{24 d \sqrt {a+a \cos (c+d x)}}+\frac {a^2 (31 A+24 C) \sqrt {a+a \cos (c+d x)} \tan (c+d x)}{24 d}+\frac {5 a A (a+a \cos (c+d x))^{3/2} \sec (c+d x) \tan (c+d x)}{12 d}+\frac {A (a+a \cos (c+d x))^{5/2} \sec ^2(c+d x) \tan (c+d x)}{3 d} \]

output
5/8*a^(5/2)*(5*A+8*C)*arctanh(sin(d*x+c)*a^(1/2)/(a+a*cos(d*x+c))^(1/2))/d 
-1/24*a^3*(49*A-24*C)*sin(d*x+c)/d/(a+a*cos(d*x+c))^(1/2)+5/12*a*A*(a+a*co 
s(d*x+c))^(3/2)*sec(d*x+c)*tan(d*x+c)/d+1/3*A*(a+a*cos(d*x+c))^(5/2)*sec(d 
*x+c)^2*tan(d*x+c)/d+1/24*a^2*(31*A+24*C)*(a+a*cos(d*x+c))^(1/2)*tan(d*x+c 
)/d
 
3.1.98.2 Mathematica [A] (verified)

Time = 0.77 (sec) , antiderivative size = 142, normalized size of antiderivative = 0.74 \[ \int (a+a \cos (c+d x))^{5/2} \left (A+C \cos ^2(c+d x)\right ) \sec ^4(c+d x) \, dx=\frac {a^2 \sqrt {a (1+\cos (c+d x))} \sec \left (\frac {1}{2} (c+d x)\right ) \sec ^3(c+d x) \left (15 \sqrt {2} (5 A+8 C) \text {arctanh}\left (\sqrt {2} \sin \left (\frac {1}{2} (c+d x)\right )\right ) \cos ^3(c+d x)+(91 A+24 C+(68 A+72 C) \cos (c+d x)+3 (25 A+8 C) \cos (2 (c+d x))+24 C \cos (3 (c+d x))) \sin \left (\frac {1}{2} (c+d x)\right )\right )}{48 d} \]

input
Integrate[(a + a*Cos[c + d*x])^(5/2)*(A + C*Cos[c + d*x]^2)*Sec[c + d*x]^4 
,x]
 
output
(a^2*Sqrt[a*(1 + Cos[c + d*x])]*Sec[(c + d*x)/2]*Sec[c + d*x]^3*(15*Sqrt[2 
]*(5*A + 8*C)*ArcTanh[Sqrt[2]*Sin[(c + d*x)/2]]*Cos[c + d*x]^3 + (91*A + 2 
4*C + (68*A + 72*C)*Cos[c + d*x] + 3*(25*A + 8*C)*Cos[2*(c + d*x)] + 24*C* 
Cos[3*(c + d*x)])*Sin[(c + d*x)/2]))/(48*d)
 
3.1.98.3 Rubi [A] (verified)

Time = 1.33 (sec) , antiderivative size = 205, normalized size of antiderivative = 1.07, number of steps used = 15, number of rules used = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.400, Rules used = {3042, 3523, 27, 3042, 3454, 27, 3042, 3454, 27, 3042, 3460, 3042, 3252, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sec ^4(c+d x) (a \cos (c+d x)+a)^{5/2} \left (A+C \cos ^2(c+d x)\right ) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right )^{5/2} \left (A+C \sin \left (c+d x+\frac {\pi }{2}\right )^2\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^4}dx\)

\(\Big \downarrow \) 3523

\(\displaystyle \frac {\int \frac {1}{2} (\cos (c+d x) a+a)^{5/2} (5 a A-a (A-6 C) \cos (c+d x)) \sec ^3(c+d x)dx}{3 a}+\frac {A \tan (c+d x) \sec ^2(c+d x) (a \cos (c+d x)+a)^{5/2}}{3 d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int (\cos (c+d x) a+a)^{5/2} (5 a A-a (A-6 C) \cos (c+d x)) \sec ^3(c+d x)dx}{6 a}+\frac {A \tan (c+d x) \sec ^2(c+d x) (a \cos (c+d x)+a)^{5/2}}{3 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {\left (\sin \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^{5/2} \left (5 a A-a (A-6 C) \sin \left (c+d x+\frac {\pi }{2}\right )\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^3}dx}{6 a}+\frac {A \tan (c+d x) \sec ^2(c+d x) (a \cos (c+d x)+a)^{5/2}}{3 d}\)

\(\Big \downarrow \) 3454

\(\displaystyle \frac {\frac {1}{2} \int \frac {1}{2} (\cos (c+d x) a+a)^{3/2} \left (a^2 (31 A+24 C)-3 a^2 (3 A-8 C) \cos (c+d x)\right ) \sec ^2(c+d x)dx+\frac {5 a^2 A \tan (c+d x) \sec (c+d x) (a \cos (c+d x)+a)^{3/2}}{2 d}}{6 a}+\frac {A \tan (c+d x) \sec ^2(c+d x) (a \cos (c+d x)+a)^{5/2}}{3 d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {1}{4} \int (\cos (c+d x) a+a)^{3/2} \left (a^2 (31 A+24 C)-3 a^2 (3 A-8 C) \cos (c+d x)\right ) \sec ^2(c+d x)dx+\frac {5 a^2 A \tan (c+d x) \sec (c+d x) (a \cos (c+d x)+a)^{3/2}}{2 d}}{6 a}+\frac {A \tan (c+d x) \sec ^2(c+d x) (a \cos (c+d x)+a)^{5/2}}{3 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {1}{4} \int \frac {\left (\sin \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^{3/2} \left (a^2 (31 A+24 C)-3 a^2 (3 A-8 C) \sin \left (c+d x+\frac {\pi }{2}\right )\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^2}dx+\frac {5 a^2 A \tan (c+d x) \sec (c+d x) (a \cos (c+d x)+a)^{3/2}}{2 d}}{6 a}+\frac {A \tan (c+d x) \sec ^2(c+d x) (a \cos (c+d x)+a)^{5/2}}{3 d}\)

\(\Big \downarrow \) 3454

\(\displaystyle \frac {\frac {1}{4} \left (\int \frac {1}{2} \sqrt {\cos (c+d x) a+a} \left (15 a^3 (5 A+8 C)-a^3 (49 A-24 C) \cos (c+d x)\right ) \sec (c+d x)dx+\frac {a^3 (31 A+24 C) \tan (c+d x) \sqrt {a \cos (c+d x)+a}}{d}\right )+\frac {5 a^2 A \tan (c+d x) \sec (c+d x) (a \cos (c+d x)+a)^{3/2}}{2 d}}{6 a}+\frac {A \tan (c+d x) \sec ^2(c+d x) (a \cos (c+d x)+a)^{5/2}}{3 d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {1}{4} \left (\frac {1}{2} \int \sqrt {\cos (c+d x) a+a} \left (15 a^3 (5 A+8 C)-a^3 (49 A-24 C) \cos (c+d x)\right ) \sec (c+d x)dx+\frac {a^3 (31 A+24 C) \tan (c+d x) \sqrt {a \cos (c+d x)+a}}{d}\right )+\frac {5 a^2 A \tan (c+d x) \sec (c+d x) (a \cos (c+d x)+a)^{3/2}}{2 d}}{6 a}+\frac {A \tan (c+d x) \sec ^2(c+d x) (a \cos (c+d x)+a)^{5/2}}{3 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {1}{4} \left (\frac {1}{2} \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a} \left (15 a^3 (5 A+8 C)-a^3 (49 A-24 C) \sin \left (c+d x+\frac {\pi }{2}\right )\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )}dx+\frac {a^3 (31 A+24 C) \tan (c+d x) \sqrt {a \cos (c+d x)+a}}{d}\right )+\frac {5 a^2 A \tan (c+d x) \sec (c+d x) (a \cos (c+d x)+a)^{3/2}}{2 d}}{6 a}+\frac {A \tan (c+d x) \sec ^2(c+d x) (a \cos (c+d x)+a)^{5/2}}{3 d}\)

\(\Big \downarrow \) 3460

\(\displaystyle \frac {\frac {1}{4} \left (\frac {1}{2} \left (15 a^3 (5 A+8 C) \int \sqrt {\cos (c+d x) a+a} \sec (c+d x)dx-\frac {2 a^4 (49 A-24 C) \sin (c+d x)}{d \sqrt {a \cos (c+d x)+a}}\right )+\frac {a^3 (31 A+24 C) \tan (c+d x) \sqrt {a \cos (c+d x)+a}}{d}\right )+\frac {5 a^2 A \tan (c+d x) \sec (c+d x) (a \cos (c+d x)+a)^{3/2}}{2 d}}{6 a}+\frac {A \tan (c+d x) \sec ^2(c+d x) (a \cos (c+d x)+a)^{5/2}}{3 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {1}{4} \left (\frac {1}{2} \left (15 a^3 (5 A+8 C) \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}{\sin \left (c+d x+\frac {\pi }{2}\right )}dx-\frac {2 a^4 (49 A-24 C) \sin (c+d x)}{d \sqrt {a \cos (c+d x)+a}}\right )+\frac {a^3 (31 A+24 C) \tan (c+d x) \sqrt {a \cos (c+d x)+a}}{d}\right )+\frac {5 a^2 A \tan (c+d x) \sec (c+d x) (a \cos (c+d x)+a)^{3/2}}{2 d}}{6 a}+\frac {A \tan (c+d x) \sec ^2(c+d x) (a \cos (c+d x)+a)^{5/2}}{3 d}\)

\(\Big \downarrow \) 3252

\(\displaystyle \frac {\frac {1}{4} \left (\frac {1}{2} \left (-\frac {30 a^4 (5 A+8 C) \int \frac {1}{a-\frac {a^2 \sin ^2(c+d x)}{\cos (c+d x) a+a}}d\left (-\frac {a \sin (c+d x)}{\sqrt {\cos (c+d x) a+a}}\right )}{d}-\frac {2 a^4 (49 A-24 C) \sin (c+d x)}{d \sqrt {a \cos (c+d x)+a}}\right )+\frac {a^3 (31 A+24 C) \tan (c+d x) \sqrt {a \cos (c+d x)+a}}{d}\right )+\frac {5 a^2 A \tan (c+d x) \sec (c+d x) (a \cos (c+d x)+a)^{3/2}}{2 d}}{6 a}+\frac {A \tan (c+d x) \sec ^2(c+d x) (a \cos (c+d x)+a)^{5/2}}{3 d}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {\frac {5 a^2 A \tan (c+d x) \sec (c+d x) (a \cos (c+d x)+a)^{3/2}}{2 d}+\frac {1}{4} \left (\frac {a^3 (31 A+24 C) \tan (c+d x) \sqrt {a \cos (c+d x)+a}}{d}+\frac {1}{2} \left (\frac {30 a^{7/2} (5 A+8 C) \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a \cos (c+d x)+a}}\right )}{d}-\frac {2 a^4 (49 A-24 C) \sin (c+d x)}{d \sqrt {a \cos (c+d x)+a}}\right )\right )}{6 a}+\frac {A \tan (c+d x) \sec ^2(c+d x) (a \cos (c+d x)+a)^{5/2}}{3 d}\)

input
Int[(a + a*Cos[c + d*x])^(5/2)*(A + C*Cos[c + d*x]^2)*Sec[c + d*x]^4,x]
 
output
(A*(a + a*Cos[c + d*x])^(5/2)*Sec[c + d*x]^2*Tan[c + d*x])/(3*d) + ((5*a^2 
*A*(a + a*Cos[c + d*x])^(3/2)*Sec[c + d*x]*Tan[c + d*x])/(2*d) + (((30*a^( 
7/2)*(5*A + 8*C)*ArcTanh[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]]) 
/d - (2*a^4*(49*A - 24*C)*Sin[c + d*x])/(d*Sqrt[a + a*Cos[c + d*x]]))/2 + 
(a^3*(31*A + 24*C)*Sqrt[a + a*Cos[c + d*x]]*Tan[c + d*x])/d)/4)/(6*a)
 

3.1.98.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3252
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*sin[(e_.) + ( 
f_.)*(x_)]), x_Symbol] :> Simp[-2*(b/f)   Subst[Int[1/(b*c + a*d - d*x^2), 
x], x, b*(Cos[e + f*x]/Sqrt[a + b*Sin[e + f*x]])], x] /; FreeQ[{a, b, c, d, 
 e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
 

rule 3454
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[(-b^2)*(B*c - A*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*((c + d*Sin[ 
e + f*x])^(n + 1)/(d*f*(n + 1)*(b*c + a*d))), x] - Simp[b/(d*(n + 1)*(b*c + 
 a*d))   Int[(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^(n + 1)*Simp 
[a*A*d*(m - n - 2) - B*(a*c*(m - 1) + b*d*(n + 1)) - (A*b*d*(m + n + 1) - B 
*(b*c*m - a*d*(n + 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f 
, A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] 
&& GtQ[m, 1/2] && LtQ[n, -1] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c, 0 
])
 

rule 3460
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((A_.) + (B_.)*sin[(e_.) + ( 
f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp 
[-2*b*B*Cos[e + f*x]*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(2*n + 3)*Sqrt[a + 
b*Sin[e + f*x]])), x] + Simp[(A*b*d*(2*n + 3) - B*(b*c - 2*a*d*(n + 1)))/(b 
*d*(2*n + 3))   Int[Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])^n, x], x] 
 /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - 
 b^2, 0] && NeQ[c^2 - d^2, 0] &&  !LtQ[n, -1]
 

rule 3523
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + 
 (f_.)*(x_)])^(n_)*((A_.) + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> 
Simp[(-(c^2*C + A*d^2))*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + 
 f*x])^(n + 1)/(d*f*(n + 1)*(c^2 - d^2))), x] + Simp[1/(b*d*(n + 1)*(c^2 - 
d^2))   Int[(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^(n + 1)*Simp[A*d*(a 
*d*m + b*c*(n + 1)) + c*C*(a*c*m + b*d*(n + 1)) - b*(A*d^2*(m + n + 2) + C* 
(c^2*(m + 1) + d^2*(n + 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, 
 e, f, A, C, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - 
d^2, 0] &&  !LtQ[m, -2^(-1)] && (LtQ[n, -1] || EqQ[m + n + 2, 0])
 
3.1.98.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(1160\) vs. \(2(168)=336\).

Time = 190.72 (sec) , antiderivative size = 1161, normalized size of antiderivative = 6.05

method result size
parts \(\text {Expression too large to display}\) \(1161\)
default \(\text {Expression too large to display}\) \(1353\)

input
int((a+cos(d*x+c)*a)^(5/2)*(A+C*cos(d*x+c)^2)*sec(d*x+c)^4,x,method=_RETUR 
NVERBOSE)
 
output
1/6*A*a^(3/2)*cos(1/2*d*x+1/2*c)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*(-600*a*(l 
n(4/(2*cos(1/2*d*x+1/2*c)+2^(1/2))*(2^(1/2)*a*cos(1/2*d*x+1/2*c)+2^(1/2)*( 
a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)+2*a))+ln(-4/(2*cos(1/2*d*x+1/2*c)-2^ 
(1/2))*(2^(1/2)*a*cos(1/2*d*x+1/2*c)-2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2 
)*a^(1/2)-2*a)))*sin(1/2*d*x+1/2*c)^6+300*(2*2^(1/2)*(a*sin(1/2*d*x+1/2*c) 
^2)^(1/2)*a^(1/2)+3*ln(4/(2*cos(1/2*d*x+1/2*c)+2^(1/2))*(2^(1/2)*a*cos(1/2 
*d*x+1/2*c)+2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)+2*a))*a+3*ln(-4 
/(2*cos(1/2*d*x+1/2*c)-2^(1/2))*(2^(1/2)*a*cos(1/2*d*x+1/2*c)-2^(1/2)*(a*s 
in(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)-2*a))*a)*sin(1/2*d*x+1/2*c)^4+(-736*2^( 
1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)-450*ln(-4/(2*cos(1/2*d*x+1/2*c 
)-2^(1/2))*(2^(1/2)*a*cos(1/2*d*x+1/2*c)-2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^ 
(1/2)*a^(1/2)-2*a))*a-450*ln(4/(2*cos(1/2*d*x+1/2*c)+2^(1/2))*(2^(1/2)*a*c 
os(1/2*d*x+1/2*c)+2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)+2*a))*a)* 
sin(1/2*d*x+1/2*c)^2+234*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)+75 
*ln(-4/(2*cos(1/2*d*x+1/2*c)-2^(1/2))*(2^(1/2)*a*cos(1/2*d*x+1/2*c)-2^(1/2 
)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)-2*a))*a+75*ln(4/(2*cos(1/2*d*x+1/ 
2*c)+2^(1/2))*(2^(1/2)*a*cos(1/2*d*x+1/2*c)+2^(1/2)*(a*sin(1/2*d*x+1/2*c)^ 
2)^(1/2)*a^(1/2)+2*a))*a)/(2*cos(1/2*d*x+1/2*c)-2^(1/2))^3/(2*cos(1/2*d*x+ 
1/2*c)+2^(1/2))^3/sin(1/2*d*x+1/2*c)/(a*cos(1/2*d*x+1/2*c)^2)^(1/2)/d+1/2* 
C*a^(3/2)*cos(1/2*d*x+1/2*c)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*(-10*2^(1/2...
 
3.1.98.5 Fricas [A] (verification not implemented)

Time = 0.32 (sec) , antiderivative size = 220, normalized size of antiderivative = 1.15 \[ \int (a+a \cos (c+d x))^{5/2} \left (A+C \cos ^2(c+d x)\right ) \sec ^4(c+d x) \, dx=\frac {15 \, {\left ({\left (5 \, A + 8 \, C\right )} a^{2} \cos \left (d x + c\right )^{4} + {\left (5 \, A + 8 \, C\right )} a^{2} \cos \left (d x + c\right )^{3}\right )} \sqrt {a} \log \left (\frac {a \cos \left (d x + c\right )^{3} - 7 \, a \cos \left (d x + c\right )^{2} - 4 \, \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {a} {\left (\cos \left (d x + c\right ) - 2\right )} \sin \left (d x + c\right ) + 8 \, a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2}}\right ) + 4 \, {\left (48 \, C a^{2} \cos \left (d x + c\right )^{3} + 3 \, {\left (25 \, A + 8 \, C\right )} a^{2} \cos \left (d x + c\right )^{2} + 34 \, A a^{2} \cos \left (d x + c\right ) + 8 \, A a^{2}\right )} \sqrt {a \cos \left (d x + c\right ) + a} \sin \left (d x + c\right )}{96 \, {\left (d \cos \left (d x + c\right )^{4} + d \cos \left (d x + c\right )^{3}\right )}} \]

input
integrate((a+a*cos(d*x+c))^(5/2)*(A+C*cos(d*x+c)^2)*sec(d*x+c)^4,x, algori 
thm="fricas")
 
output
1/96*(15*((5*A + 8*C)*a^2*cos(d*x + c)^4 + (5*A + 8*C)*a^2*cos(d*x + c)^3) 
*sqrt(a)*log((a*cos(d*x + c)^3 - 7*a*cos(d*x + c)^2 - 4*sqrt(a*cos(d*x + c 
) + a)*sqrt(a)*(cos(d*x + c) - 2)*sin(d*x + c) + 8*a)/(cos(d*x + c)^3 + co 
s(d*x + c)^2)) + 4*(48*C*a^2*cos(d*x + c)^3 + 3*(25*A + 8*C)*a^2*cos(d*x + 
 c)^2 + 34*A*a^2*cos(d*x + c) + 8*A*a^2)*sqrt(a*cos(d*x + c) + a)*sin(d*x 
+ c))/(d*cos(d*x + c)^4 + d*cos(d*x + c)^3)
 
3.1.98.6 Sympy [F(-1)]

Timed out. \[ \int (a+a \cos (c+d x))^{5/2} \left (A+C \cos ^2(c+d x)\right ) \sec ^4(c+d x) \, dx=\text {Timed out} \]

input
integrate((a+a*cos(d*x+c))**(5/2)*(A+C*cos(d*x+c)**2)*sec(d*x+c)**4,x)
 
output
Timed out
 
3.1.98.7 Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 12441 vs. \(2 (168) = 336\).

Time = 1.06 (sec) , antiderivative size = 12441, normalized size of antiderivative = 64.80 \[ \int (a+a \cos (c+d x))^{5/2} \left (A+C \cos ^2(c+d x)\right ) \sec ^4(c+d x) \, dx=\text {Too large to display} \]

input
integrate((a+a*cos(d*x+c))^(5/2)*(A+C*cos(d*x+c)^2)*sec(d*x+c)^4,x, algori 
thm="maxima")
 
output
-1/2016*(21*(1530*a^2*cos(4*d*x + 4*c)^2*sin(3/2*d*x + 3/2*c) + 1530*a^2*c 
os(2*d*x + 2*c)^2*sin(3/2*d*x + 3/2*c) + 1530*a^2*sin(4*d*x + 4*c)^2*sin(3 
/2*d*x + 3/2*c) + 1530*a^2*sin(2*d*x + 2*c)^2*sin(3/2*d*x + 3/2*c) + 4176* 
a^2*cos(7/2*d*x + 7/2*c)*sin(2*d*x + 2*c) + 2430*a^2*cos(5/2*d*x + 5/2*c)* 
sin(2*d*x + 2*c) + 678*a^2*cos(3/2*d*x + 3/2*c)*sin(2*d*x + 2*c) + 342*a^2 
*cos(2*d*x + 2*c)*sin(3/2*d*x + 3/2*c) + 10*(a^2*sin(9/2*d*x + 9/2*c) + 17 
*a^2*sin(3/2*d*x + 3/2*c))*cos(6*d*x + 6*c)^2 + 10*(a^2*sin(9/2*d*x + 9/2* 
c) + 17*a^2*sin(3/2*d*x + 3/2*c))*sin(6*d*x + 6*c)^2 - 56*a^2*sin(3/2*d*x 
+ 3/2*c) + 10*(a^2*sin(6*d*x + 6*c) + 3*a^2*sin(4*d*x + 4*c) + 3*a^2*sin(2 
*d*x + 2*c))*cos(21/2*d*x + 21/2*c) - 30*(a^2*sin(6*d*x + 6*c) + 3*a^2*sin 
(4*d*x + 4*c) + 3*a^2*sin(2*d*x + 2*c))*cos(19/2*d*x + 19/2*c) - 48*(a^2*s 
in(6*d*x + 6*c) + 3*a^2*sin(4*d*x + 4*c) + 3*a^2*sin(2*d*x + 2*c))*cos(17/ 
2*d*x + 17/2*c) + 80*(a^2*sin(6*d*x + 6*c) + 3*a^2*sin(4*d*x + 4*c) + 3*a^ 
2*sin(2*d*x + 2*c))*cos(15/2*d*x + 15/2*c) + 396*(a^2*sin(6*d*x + 6*c) + 3 
*a^2*sin(4*d*x + 4*c) + 3*a^2*sin(2*d*x + 2*c))*cos(13/2*d*x + 13/2*c) + 6 
*(170*a^2*cos(4*d*x + 4*c)*sin(3/2*d*x + 3/2*c) + 170*a^2*cos(2*d*x + 2*c) 
*sin(3/2*d*x + 3/2*c) - 170*a^2*sin(11/2*d*x + 11/2*c) - 232*a^2*sin(7/2*d 
*x + 7/2*c) - 135*a^2*sin(5/2*d*x + 5/2*c) + 19*a^2*sin(3/2*d*x + 3/2*c) + 
 10*(a^2*cos(4*d*x + 4*c) + a^2*cos(2*d*x + 2*c) - 25*a^2)*sin(9/2*d*x + 9 
/2*c))*cos(6*d*x + 6*c) + 3060*(a^2*sin(4*d*x + 4*c) + a^2*sin(2*d*x + ...
 
3.1.98.8 Giac [A] (verification not implemented)

Time = 1.49 (sec) , antiderivative size = 293, normalized size of antiderivative = 1.53 \[ \int (a+a \cos (c+d x))^{5/2} \left (A+C \cos ^2(c+d x)\right ) \sec ^4(c+d x) \, dx=\frac {\sqrt {2} {\left (192 \, C a^{2} \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 15 \, \sqrt {2} {\left (5 \, A a^{2} \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) + 8 \, C a^{2} \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )\right )} \log \left (\frac {{\left | -2 \, \sqrt {2} + 4 \, \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}}{{\left | 2 \, \sqrt {2} + 4 \, \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}}\right ) - \frac {4 \, {\left (300 \, A a^{2} \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} + 96 \, C a^{2} \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} - 368 \, A a^{2} \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 96 \, C a^{2} \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 117 \, A a^{2} \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 24 \, C a^{2} \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{{\left (2 \, \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right )}^{3}}\right )} \sqrt {a}}{96 \, d} \]

input
integrate((a+a*cos(d*x+c))^(5/2)*(A+C*cos(d*x+c)^2)*sec(d*x+c)^4,x, algori 
thm="giac")
 
output
1/96*sqrt(2)*(192*C*a^2*sgn(cos(1/2*d*x + 1/2*c))*sin(1/2*d*x + 1/2*c) - 1 
5*sqrt(2)*(5*A*a^2*sgn(cos(1/2*d*x + 1/2*c)) + 8*C*a^2*sgn(cos(1/2*d*x + 1 
/2*c)))*log(abs(-2*sqrt(2) + 4*sin(1/2*d*x + 1/2*c))/abs(2*sqrt(2) + 4*sin 
(1/2*d*x + 1/2*c))) - 4*(300*A*a^2*sgn(cos(1/2*d*x + 1/2*c))*sin(1/2*d*x + 
 1/2*c)^5 + 96*C*a^2*sgn(cos(1/2*d*x + 1/2*c))*sin(1/2*d*x + 1/2*c)^5 - 36 
8*A*a^2*sgn(cos(1/2*d*x + 1/2*c))*sin(1/2*d*x + 1/2*c)^3 - 96*C*a^2*sgn(co 
s(1/2*d*x + 1/2*c))*sin(1/2*d*x + 1/2*c)^3 + 117*A*a^2*sgn(cos(1/2*d*x + 1 
/2*c))*sin(1/2*d*x + 1/2*c) + 24*C*a^2*sgn(cos(1/2*d*x + 1/2*c))*sin(1/2*d 
*x + 1/2*c))/(2*sin(1/2*d*x + 1/2*c)^2 - 1)^3)*sqrt(a)/d
 
3.1.98.9 Mupad [F(-1)]

Timed out. \[ \int (a+a \cos (c+d x))^{5/2} \left (A+C \cos ^2(c+d x)\right ) \sec ^4(c+d x) \, dx=\int \frac {\left (C\,{\cos \left (c+d\,x\right )}^2+A\right )\,{\left (a+a\,\cos \left (c+d\,x\right )\right )}^{5/2}}{{\cos \left (c+d\,x\right )}^4} \,d x \]

input
int(((A + C*cos(c + d*x)^2)*(a + a*cos(c + d*x))^(5/2))/cos(c + d*x)^4,x)
 
output
int(((A + C*cos(c + d*x)^2)*(a + a*cos(c + d*x))^(5/2))/cos(c + d*x)^4, x)